National Repository of Grey Literature 5 records found  Search took 0.01 seconds. 
Charge Carrier Transport in Ta2O5 Oxide Nanolayers with Application to the Tantalum Capacitors
Kopecký, Martin ; Koktavý, Bohumil (referee) ; Hudec, Lubomír (referee) ; Sedláková, Vlasta (advisor)
Studium transportu náboje v Ta2O5 oxidových nanovrstvách se zaměřuje především na objasnění vlivu defektů na vodivost těchto vrstev. Soustředíme se na studium oxidových nanovrstev Ta2O5 vytvořených pomocí anodické oxidace. Proces výroby Ta2O5 zahrnuje řadu parametrů, jež ovlivňují koncentraci defektů (oxidových vakancí) v této struktuře. Vrstva oxidu Ta2O5 o tloušťce 20 až 200 nm se často používá jako dielektrikum pro tantalové kondenzátory, které se staly nedílnou součástí elektrotechnického průmyslu. Kondenzátory s Ta2O5 dielektrickou vrstvou lze modelovat jako strukturu MIS (kov – izolant – polovodič). Anodu tvoří tantal s kovovou vodivostí, katodu potom MnO2 či vodivý polymer (CP), které jsou polovodiče. Hodnoty elektronových afinit, respektive výstupních prací, jednotlivých materiálů potom určují výšku potenciálových bariér vytvořených na rozhraních kov-izolant (M – I) a izolant-polovodič (I – S). Dominantní mechanizmy transportu náboje lze určit analýzou I-V charakteristiky zbytkového proudu. Dominantní mechanizmy transportu náboje izolační vrstvou jsou ohmický, Poole-Frenkelův, Shottkyho a tunelování. Uplatnění jednotlivých vodivostních mechanismů je závislé na teplotě a intenzitě elektrického pole v izolantu. Hodnota zbytkového proud je významným indikátorem kvality daného izolantu. Ten závisí na technologii výroby kondenzátoru, významně především na parametrech anodické oxidace a na materiálu katody. I-V charakteristiky zbytkového proudu se měří v normálním a reversním módu, tj. normální mód značí kladné napětí na anodě a reversní mód záporné napětí na anodě. I-V charakteristika je výrazně nesymetrická, a proto tyto kondenzátory musí být vhodně polarizovány. Nesymetrie I-V charakteristiky se snižuje s klesající teplotou, při teplotě pod 50 K a je možno některé kondenzátory používat jako bipolární součástky. Z analýzy I-V charakteristiky lze určit řadu parametrů, jako tloušťku izolační vrstvy a koncentraci defektů v izolační Ta2O5 vrstvě a dále lze odhadnout parametry MIS modelu kondenzátoru - stanovit hodnotu potenciálových bariér na rozhraních M – I a I – S. Měření C-V charakteristik při různých teplotách v rozsahu 10 až 300 K je využíto pro určení výšky potenciálové bariéry na rozhraní I – S, závislosti kapacity na teplotě a dále pro výpočet efektivní plochy elektrod. Z výbrusu vzorků na skenovacím elektronovém mikroskopu byly určeny tloušťky dielektrika Ta2O5 pro jednotlivé vyhodnocované řady kondenzátorů.
Transport of Electric Charge in Tantalum Capacitor
Pelčák, Jaromír ; Koktavý, Bohumil (referee) ; Hájek, Karel (referee) ; Grmela, Lubomír (advisor)
The task of the thesis was studding of tantalum capacitors with solid electrolytes properties. Ta – Ta2O5 – MnO2 capacitor by its construction represents MIS structure, where tantalum anode has metal conductivity and MnO2 cathode is semiconductor. Isolation layer consists of tantalum pentoxide Ta2O5 with relative permitivity r = 27. Dielectric thickness is typically in range from 30 to 150nm. The capacitor charge is not only stored and accumulated on electrodes but also in localised states (oxide vacancies) in isolation layer. The capacitor connected in normal mode represents MIS structure polarized in reveres direction when the applied voltage higher potential barrier between semiconductor - MnO2 cathode and isolation of Ta2O5. The transport of charge carriers via isolation layer is determined by Poole-Frenkel mechanisms and tunnelling. Poole-Frenkel mechanism of charge transport is dominant in low intensity of electric field. Tunnelling determines current at higher electric field intensity. During low intensity of electric field ohmic component is also presented which is determined by volume of resistance of impurities in isolation layer due to donor states of oxygen vacancies. Based on the modelling of measured VA characteristics is possible to estimate determine dielectric thickness of Ta2O5 and determine share of Poole-Frenkelov and tunnel current and charge transportation. The thesis is described charge transport and charge concentration on tantalum capacitor in low frequency area and analysis of capacitor behaviour at frequency band. The first impulse for the thesis was an effort to create equivalent circuit diagram of tantalum capacitor in respect of its physical and electrical behaviour. There is an opportunity to study and determine electric charge transport and its accumulation based on the equivalent circuit diagram structure. There is also a chance to define and trace potential barriers and charge distribution in the capacitor structure based on an measurement and carried out experiments. This methodology and analysis consists of electrical characteristic determination to create physical model of the capacitor describing it function, properties and behaviour.
Tantalum Capacitor As A Mis Structure: Transport Characteristics Temperature Dependencies
Kuparowitz, Martin ; Kuparowitz, Tomáš
Temperature dependencies of a leakage current in normal mode are explained on the basis of a model, in which the solid state tantalum capacitor is considered as a metal-insulatorsemiconductor (MIS) heterostructure. The measurement was performed in temperature range from 105 to 155°C. Ohmic conductivity increases exponentially with increasing temperature with activation energy 0.94 eV. Tunneling voltage parameter and tunneling energy barrier decreases with increasing temperature, reaching values 0.45 to 0.26 eV.
Charge Carrier Transport in Ta2O5 Oxide Nanolayers with Application to the Tantalum Capacitors
Kopecký, Martin ; Koktavý, Bohumil (referee) ; Hudec, Lubomír (referee) ; Sedláková, Vlasta (advisor)
Studium transportu náboje v Ta2O5 oxidových nanovrstvách se zaměřuje především na objasnění vlivu defektů na vodivost těchto vrstev. Soustředíme se na studium oxidových nanovrstev Ta2O5 vytvořených pomocí anodické oxidace. Proces výroby Ta2O5 zahrnuje řadu parametrů, jež ovlivňují koncentraci defektů (oxidových vakancí) v této struktuře. Vrstva oxidu Ta2O5 o tloušťce 20 až 200 nm se často používá jako dielektrikum pro tantalové kondenzátory, které se staly nedílnou součástí elektrotechnického průmyslu. Kondenzátory s Ta2O5 dielektrickou vrstvou lze modelovat jako strukturu MIS (kov – izolant – polovodič). Anodu tvoří tantal s kovovou vodivostí, katodu potom MnO2 či vodivý polymer (CP), které jsou polovodiče. Hodnoty elektronových afinit, respektive výstupních prací, jednotlivých materiálů potom určují výšku potenciálových bariér vytvořených na rozhraních kov-izolant (M – I) a izolant-polovodič (I – S). Dominantní mechanizmy transportu náboje lze určit analýzou I-V charakteristiky zbytkového proudu. Dominantní mechanizmy transportu náboje izolační vrstvou jsou ohmický, Poole-Frenkelův, Shottkyho a tunelování. Uplatnění jednotlivých vodivostních mechanismů je závislé na teplotě a intenzitě elektrického pole v izolantu. Hodnota zbytkového proud je významným indikátorem kvality daného izolantu. Ten závisí na technologii výroby kondenzátoru, významně především na parametrech anodické oxidace a na materiálu katody. I-V charakteristiky zbytkového proudu se měří v normálním a reversním módu, tj. normální mód značí kladné napětí na anodě a reversní mód záporné napětí na anodě. I-V charakteristika je výrazně nesymetrická, a proto tyto kondenzátory musí být vhodně polarizovány. Nesymetrie I-V charakteristiky se snižuje s klesající teplotou, při teplotě pod 50 K a je možno některé kondenzátory používat jako bipolární součástky. Z analýzy I-V charakteristiky lze určit řadu parametrů, jako tloušťku izolační vrstvy a koncentraci defektů v izolační Ta2O5 vrstvě a dále lze odhadnout parametry MIS modelu kondenzátoru - stanovit hodnotu potenciálových bariér na rozhraních M – I a I – S. Měření C-V charakteristik při různých teplotách v rozsahu 10 až 300 K je využíto pro určení výšky potenciálové bariéry na rozhraní I – S, závislosti kapacity na teplotě a dále pro výpočet efektivní plochy elektrod. Z výbrusu vzorků na skenovacím elektronovém mikroskopu byly určeny tloušťky dielektrika Ta2O5 pro jednotlivé vyhodnocované řady kondenzátorů.
Transport of Electric Charge in Tantalum Capacitor
Pelčák, Jaromír ; Koktavý, Bohumil (referee) ; Hájek, Karel (referee) ; Grmela, Lubomír (advisor)
The task of the thesis was studding of tantalum capacitors with solid electrolytes properties. Ta – Ta2O5 – MnO2 capacitor by its construction represents MIS structure, where tantalum anode has metal conductivity and MnO2 cathode is semiconductor. Isolation layer consists of tantalum pentoxide Ta2O5 with relative permitivity r = 27. Dielectric thickness is typically in range from 30 to 150nm. The capacitor charge is not only stored and accumulated on electrodes but also in localised states (oxide vacancies) in isolation layer. The capacitor connected in normal mode represents MIS structure polarized in reveres direction when the applied voltage higher potential barrier between semiconductor - MnO2 cathode and isolation of Ta2O5. The transport of charge carriers via isolation layer is determined by Poole-Frenkel mechanisms and tunnelling. Poole-Frenkel mechanism of charge transport is dominant in low intensity of electric field. Tunnelling determines current at higher electric field intensity. During low intensity of electric field ohmic component is also presented which is determined by volume of resistance of impurities in isolation layer due to donor states of oxygen vacancies. Based on the modelling of measured VA characteristics is possible to estimate determine dielectric thickness of Ta2O5 and determine share of Poole-Frenkelov and tunnel current and charge transportation. The thesis is described charge transport and charge concentration on tantalum capacitor in low frequency area and analysis of capacitor behaviour at frequency band. The first impulse for the thesis was an effort to create equivalent circuit diagram of tantalum capacitor in respect of its physical and electrical behaviour. There is an opportunity to study and determine electric charge transport and its accumulation based on the equivalent circuit diagram structure. There is also a chance to define and trace potential barriers and charge distribution in the capacitor structure based on an measurement and carried out experiments. This methodology and analysis consists of electrical characteristic determination to create physical model of the capacitor describing it function, properties and behaviour.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.